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Approximate nearest neighbor search has attracted much attention recently, which allows for fast query
with a predictable sacrifice in search quality. Among the related works, k-means quantizers are possibly
the most adaptive methods, and have shown the superiority on search accuracy than the others.
However, a common problem shared by the traditional quantizers is that during the out-of-sample
extension process, the naive strategy considers only the similarities in Euclidean space without taking
into account the statistical and geometrical properties of the data. To cope with this problem, in this
paper a novel approach is proposed by formulating a generalized likelihood ratio analysis. In particular,
the proposed method takes a physically meaningful discrimination on the affiliations of the new samples
with respect to the obtained Voronoi cells. This discrimination essentially imposes the measure of statis-
tical consistency on out-of-sample extension. The experimental studies on two large data sets show that
the proposed method is more effective than the benchmark algorithms.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

With the explosive data growth on the web, fast similarity
indexing and search are considered to be one of the most funda-
mental problems for the multimedia communities [1–3]. This
problem is also known as Nearest Neighbor (NN) search, which is
defined as accurately finding the close samples for a given query
within a large database [4,5]. It is of great importance to a wide
range of multimedia applications, such as content-based image/
video retrieval [6–8], image/video auto-tagging [9–11], image clas-
sification [12,13], and scene recognition [14]. Naively searching for
the neighbors according to their similarities entails exhaustively
comparing the queries with the examples over the entire database.
This strategy has linear complexity with respect to the scale of the
database, which is infeasible on ever larger databases. Besides, to
achieve satisfying performance on such databases, most of the
related applications have to rely on the high-dimensional or struc-
tured representations, as well as the computationally considerable
distance functions [15,16]. Therefore, the naive strategy is prohib-
itively expensive in practical situations.

To make similarity indexing and search scalable, several
Approximate Nearest Neighbor (ANN) techniques have been devel-
oped, through which a fast query is allowed with the predictable
sacrifice in accuracy [17,18]. Instead of performing a completely
NN search on a database X through linear scanning with OðjXjÞ
query time, ANN techniques are desired to achieve the fast yet
accurate indexing with sublinear oðjXjÞ [19,20], logarithmic
Oðlog jXjÞ [21,22], or even with constant Oð1Þ complexity. Among
these techniques, hashing-based ones have attracted more atten-
tion and announced laudable performances recently. This type of
ANN techniques is preferable for its constant query time and the
substantially reduced memory [23]. In this work, we focus on the
later aspect that relies on generating compact binary codes for
the high dimensional samples in a large database while maintain-
ing the structure of the original database. By constraining the
similar data points with close binary codes, similarity search is
then accelerated by finding the neighbors within a small Hamming
distance from the query.

Broadly, researches toward hashing can be divided into two
main categories: Hamming-based and lookup-based. Both these
two categories involve a quantization process, through which the
original feature space is partitioned into some unique cells, and a
corresponding strategy for distance computation. For the
Hamming-based methods, the quantization is achieved by using
hyperplanes [24,25] or kernel hyperplanes [26,27]. These hyper-
planes are generally determined by the signs of the employed
hashing functions. Each hyperplane is then used to encode a un-
ique bit of the desired compact code. In regard of hashing function,
several strategies have been developed to cope with the practical
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scenarios. For instance, in [28] the post-combination strategy is
employed on the linear hash functions of different types of features
for content-based image retrieval. In [8] a pre-concatenation strat-
egy is proposed for contend-based video retrieval, which equally
concatenates all the employed features as one and then constructs
the hashing function. Differently, in [29,30], multiple features are
non-linearly concatenated and then projected using linearly
combined multiple kernel hyperplanes. As for the lookup-based
methods [31–33], they usually partition the feature space through
k-means clustering. Such a quantization is considered to be more
adaptive than those on the basis of hyperplane construction, and
is likely to be more accurate with the same code-length [34].

Though the lookup-based methods have shown success in many
large-scale searching scenarios, there is a problem seldom
exploited. Given b bits for quantization, k-means quantizers are
implemented by mapping the original descriptions to the code-
book containing at most 2b codewords [31–33]. Specifically, the
classical k-means quantizers use the cluster centers as codewords,
and then assign to any data point a nearest codeword according to
the distance measure in Euclidean space. However, in spite of min-
imal quantization error during off-line training [15,32], assigning a
new sample the cluster index through such strategy lacks statisti-
cal interpretability, and may fail in many practical cases. For exam-
ple, as shown in Fig. 1, the new sample x will be assigned the
cluster index c2 if only the Euclidean distances to the cluster cen-
ters are consulted, but it may have the property more similar to
those contained in the cluster c1.

In order to cope with the above problem, in this paper a novel
quantizer is proposed for effective similarity search. This method
improves the classical k-means quantization by taking into account
the statistical consistency of a new sample with respect to each
partitioned cell. Our purpose is achieved by formulating a General-
ized Likelihood Ratio (GLR) analysis, through which each sample can
be identified as an inlier or not in the examined cell. We claim that
the proposed method is physically meaningful and practically
preferable in the out-of-sample extension process.

The rest of this paper is organized as follows: Section 2 gives a
brief review on the background of quantization methods. Section 3
presents the detailed formulation of the proposed method. Then,
the experimental comparison is conducted and analyzed in Sec-
tion 4 to verify the effectiveness of the proposed method. Finally,
the conclusion is given in Section 5 to summarize this paper.

2. Background: quantization via k-means

Quantization has been the topic of prolonged and extensive
study, and has a large body of literatures in information theory
[31,35]. Its purpose is to provide a low-cardinal representation
space to a database, which can facilitate further processing
Fig. 1. Failure case of assigning a new sample x to a cluster index according to the
similarity in Euclidean space.
especially when the tasks suffer from the curse of dimensionality.
This section starts with the presentation for the classical concept
of quantizing the feature space in a k-means fashion. Then, a brief
review on the generalization of this quantization strategy to
product space is presented, which improves the practicability of
the quantizer when the bit number is large.

2.1. Vector quantization

For the classical vector quantization, the quantizer is a function
qð�Þmapping a m-dimensional vector x 2 Rm to another vector [31],
such that

qðxÞ 2 C ¼ fcijci 2 Rm; i 2 Ig; ð1Þ

where the set C is the codebook of size k; ci is the codeword usually
given by the k-means centers [15,32], and I ¼ f0;1; . . . ; k� 1g. Each
set of vectors mapped to the same codeword ci is referred to as a
unique Voronoi cell V i, which is defined as

V i ¼ fxjx 2 Rm; qðxÞ ¼ cig: ð2Þ

Then, the k cells together characterize the partition that the
quantizier induces on the input space Rm. The relationship of these
concepts is illustrated in Fig. 2.

By definition, each input vector will be represented by the
assigned codeword. The quality of a given quantizer is usually
measured in term of the averaged distortion between the original
vector x and the mapping qðxÞ [15,31],

DðqÞ ¼ Ex½dðx; qðxÞÞ�; ð3Þ

where the distortion measure dðx; yÞ can take various specific forms,
and is typically the Euclidean distance between x and y [15,32].
Then, applying the triangle inequality for (3) leads to

Ex½jdðx; x0Þ � dðx; qðx0ÞÞj� 6 DðqÞ: ð4Þ

This indicates an upper bound on the expected error for esti-
mating the inter-sample distances, when one sample in a pair is
approximated by its quantization result. Therefore, a quantizer
that minimizes DðqÞ for a given codebook of size k can claim its
effectiveness for NN search within the database.

In order for a quantizer to be optimal subject to the underlying
probability distribution, it has to satisfy the following two
properties:

� qðxÞ ¼ fcijdðx; ciÞ 6 dðx; cjÞ;8j 2 Ig;
� ci ¼ arg minx0Ex½dðx; x0Þjx; x0 2 V i�.

The first property regularizes that the quantization cells consist
of samples no further from its centroid than from any other
Fig. 2. Illustration of the related concepts. The red and blue dots represent the
samples x and the codewords c, respectively. A set of samples in a polygon
constitutes a Voronoi cell V i . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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codewords. The second condition is that the codeword for a given
cell must be the expectation of the data points lying in the cell.
These two properties are also known as the Lloyd optimality con-
ditions [36], which contribute to the theoretical basis of k-means.

2.2. Generalization to product space

Given b bits for vector quantization, the classical k-means quan-
tizers have to contain 2b codewords. For a large b (e.g., b ¼ 64 such
that k ¼ 264), it is not practical to directly use the Lloyd optimality
conditions due to the expensive computational cost. Actually, it is
even impossible to load the k�m floating-point values into mem-
ory. Towards this issue, the product quantization method is an effi-
cient solution, of which the problem is reduced to be the
optimization in a set of independent subspaces [15,32].

In the case that the probability distribution of x can be consid-
ered to be independent in its components, the product quantiza-
tion method forms the Cartesian product of Rm yielding L
subspaces. That is, splitting each vector x 2 Rm into L distinct sub-
vectors: x ¼ ½x̂1; . . . ; x̂l; . . . ; x̂L�, where x̂l denotes the lth subvector of
dimension m̂ ¼ m=L. For each subspace, a low-complexity sub-
quantizer is obtained independently by minimizing the expected
distortion for the corresponding subvectors [15,32]. To be specific,
the lth quantizer ql associated with the lth subspace is optimized
by minimizing

DðqlÞ ¼ Ex̂l ½dðx̂l; qlðx̂lÞÞ�: ð5Þ

A sub-quantizer ql contains a sub-codebook Ĉl with k̂ sub-code-
words. Any codeword c of the product quantizer is constructed as a
concatenation of L sub-codewords drawn from L sub-codebooks.
Correspondingly, the final codebook is also defined as the Cartesian
product

C ¼ C1 � � � � � Cl � � � � CL: ð6Þ

In such a way, the total number of distinct codewords in
Rmreaches k ¼ ðk̂Þ

L
. This property makes a product quantizer to

be powerful to produce a large set of codewords from several sub-
sets. But the algorithm only needs to calculate and store
k̂� L� m̂ ¼ k̂�m floating-point values, instead of the original
amount k�m. Thus, the product quantizer turns out to be efficient
since k̂ can be much less than k.

3. Proposed model

In the classical k-means quantizers, the binary codes assigned to
the training samples are determined according to their distances
from the codewords in Euclidean space. Then, the same criterion
is also applied to tackle the out-of-sample extension problem
[15,31–33]. This strategy implies an assumption that including
the new samples will not introduce any distortion on the statistical
and geometrical properties of the original database. However, this
assumption does not hold for many practical cases, particularly the
ones where the statistics vary greatly among different clusters.

Toward this problem, in this paper the out-of-sample extension
process is formulated by a physically meaningful GLR analysis,
through which the statistical consistency of a sample with respect
to each partitioned cell is analyzed to determine its affiliation.

3.1. Formulation of the problem

Considering an undesirable signal h 2 Rm, which will lead to
deviations from the distribution of an examined cell V, the two
hypotheses to be distinguished for a new sample are given by

H0 : x ¼ z;
H1 : x ¼ zþ sh:

�
ð7Þ
The hypothesis H1 represents the presence of an undesirable
signal with strength s, and H0 indicates the opposite case. z 2 Rm

is a vector representation of residual ‘‘background’’ or ‘‘clutter’’
signal fitting the desired distribution. Thus, for a data set X includ-
ing the examined cell V and the new sample x;X ¼ fV [ xg, the two
hypothesis are formulated as

H0 : X ¼ Z;

H1 : X ¼ Z þ STh;

�
ð8Þ

where S ¼ ½s1; s2; . . . ; sN� is the strength vector, which also reflects
the spatial position of h across the data set of size N.

3.2. Definition of the likelihood function

Without loss of generality, we impose a mean removal process
on Z. Then the residual clutter could be assumed to be multivariate
Gaussian and independent from sample to sample according to
[37]. As a consequence, X should be also Gaussian distributed. Then
we have

X �
Nð0; INRÞ; H0;

NðSTh; INRÞ; H1:

(
ð9Þ

where

R ¼ Ef½x� EðxÞ�T ½x� EðxÞ�g; ð10Þ

is the covariance of x, and IN denotes the N � N identity matrix.
By definition [38], the likelihood function for the H1 case

depending on h and R is in the form of

Lðh;RÞ ¼ ½ð2pÞmjRj��N=2

� exp �1
2

X
i

½ðx� EðxÞÞR�1ðx� EðxÞÞT �
( )

¼ ½ð2pÞmjRj��N=2

� exp �1
2

tr½ðX � SThÞR�1ðX � SThÞT �
� �

:

ð11Þ

Also, a similar expression gives the function Lð0;RÞ for the H0

hypothesis.

3.3. Determination by GLR

Considering the statistical consistency between the new sample
and each partitioned cell, the proposed method aims at construct-
ing a physically meaningful and practically preferable criteria for
the out-of-sample extension process. After introducing the formu-
lation of the problem and the definition of the likelihood functions,
we now details the GLR analysis to determine the acceptability of a
new sample as an inlier in a data set. Given the likelihood functions
for the alternative hypotheses, the GLR is calculated by

KðxÞ ¼maxh;RLðh;RÞ
maxRLð0;RÞ

: ð12Þ

For this definition, a larger value of KðxÞ indicates the high possibil-
ity of the new sample x being inconsistent with respect to the
examined cell.

According to the well-known Maximum Likelihood Estimator
(MLE) [38], the two items in (12) for the unknown parameters h
and Rare given by

max
h;R
Lðh;RÞ ¼ ½ð2pÞmjRhj�

�N=2 expð�mN=2Þ; ð13Þ

max
R
Lð0;RÞ ¼ ½ð2pÞmjR0j�

�N=2 expð�mN=2Þ; ð14Þ

where the covariance matrixes under the difference hypotheses H0

and H1 are respectively calculated as



Table 1
Summary of the employed data sets.

SIFT-1M MNIST

Dimensionality 128 784
Learning subset size 10,000 10,000
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R0 ¼
1
N

XT X; ð15Þ

and

Rh ¼
1
N
ðX � ST ĥÞTðX � ST ĥÞ; ð16Þ

with the approximation of the undesirable signal ĥ given by

ĥ ¼ ST X

ST S
: ð17Þ

Thus, after applying the maximum likelihood estimation results
on the definition of GLR, (12) can be further translated to

KðxÞ ¼ jR0jm=2

jRhjm=2

/ jXT Xj
jXT X � ðST XÞTðST SÞ�1ðST XÞj

/ ðS
T XÞðXT XÞ�1ðST XÞT

ST S
:

ð18Þ

It should be noted that the vector S essentially reflects the spa-
tial position of the new sample in the constructed data set, i.e.,
S ¼ ½0; . . . ;0;1;0; . . . ;0� in practice. Besides, the mean of the data
set has to be removed to match the zero-mean assumption on
the hypothesis H0. These yield

KðxÞ ¼ ðx� lXÞR
�1
X ðx� lXÞ

T
; ð19Þ

where lX and RX are the sample mean and covariance of X,
respectively.

Once the statistical consistencies of the new samples with re-
spect to the partitioned cells have been obtained, the out-of-sam-
ple extension process can be accomplished by assigning each new
sample to the cell associated with the corresponding minimum
GLR.

4. Experiments

This section will verify the performance of the proposed meth-
od on similarity search. We evaluate our method (termed SQ) and
the most related method Product Quantization (PQ) [32] on several
benchmark data sets. SQ and PQ share the procedure of codebook
construction. But the out-of-sample extension process of PQ still
relies on the similarity measure in Euclidean space, while SQ
employs the proposed GLR analysis. Their performance is further
compared with 4 state-of-the-art methods: Compressed Hashing
(CH) [1], Unsupervised Sequential Projection Learned Hashing
(USPLH) [2], Spectral Hashing (SH) [27], and Locality Sensitive
Hashing (LSH) [23]. The following paragraphs start with the brief
description of the employed data sets, and then describe the exper-
imental protocol concerning the evaluation metrics. Finally, the
experimental results and the comparisons are presented in detail.

4.1. Data set

The experiments are performed on two publicly available data
sets: SIFT-1M1 [32], and MNIST2 [39]. Both these two data sets are
originally constituted by a database subset, and a query subset. Each
query term in the query subset is associated with its ground truth
indices of the nearest neighbors contained in the database subset.
Ground truths are defined as Euclidean neighbors for SIFT-1M,
and by means of the labeled category information for MNIST.
Database subset size 100,000 69,000
Query subset size 10,000 1000
Nearest neighbor size 2000 1380

1 http://www.irisa.fr/texmex/people/jegou/ann.php.
2 http://yann.lecun.com/exdb/mnist/.
Additionally, in order to establish the codebooks for SQ and PQ, as
well as to learn the hashing functions for the other benchmark meth-
ods, we randomly sample from each database subset with extra
10,000 vectors to constitute the learning subset. Table 1 summaries
the properties of the finally employed data sets.

� SIFT-1M. This data set contains 110,000 local SIFT descriptors
[40] extracted from a large set of images [41]. Each descriptor
in the data set is a 128-dimensional vector representing histo-
grams of gradient orientations within a local image structure.
In the existing literatures [1,2], there are commonly 1 million
samples constituting the database subset, and the remaining
10,000 samples serving as the independent queries. The ground
truth nearest neighbors taken into account for a query descrip-
tor are the ones lying in the top 2% positions at the rank of
Euclidean similarity.
� MNIST. The MNIST handwritten digit data set consists of 70,000

images representing the handwritten digit characters from ‘0’ to
‘9’. The overall data set contains examples from approximately
500 different writers. The digits in this data set have been size-
normalized and centered in the images of resolution 28 � 28.
Following [2], The whole data set is split into a database subset
with 69,000 descriptors and a query subset composed of 1000
samples. All the samples in this data set are represented by
the raw image information, and the binary encoding is per-
formed in the feature space of dimension 784.

4.2. Experimental protocol

To perform quantitative evaluation, this paper follows the crite-
rion of Hamming ranking commonly adopted in the literatures
[1,2,15]. Through Hamming ranking, all the samples in the data-
base subset will be sorted according to their similarities to the
query in Hamming distance space. Then, the samples within the
top of the ranked list will be retrieved as the desired neighbors.
Hamming ranking strategy is an exhaustive search method with
linear complexity, but is proved that it can be improved to a very
fast speed [42].

Based on the search results, two metrics—precision and recall,
are employed to measure the quantitative performance of the con-
ducted methods. Precision is calculated as the proportion of the po-
sitive retrieved nearest neighbors among the overall returned
samples. Recall is defined as the percentage of returned true near-
est neighbors in relation to the total number of ground truth near-
est neighbors.

4.3. Performance

To validate the effectiveness of the proposed quantizer, the
experiments supporting the comparison with the benchmark
methods are conducted on the employed data sets. This section
starts with the comparison of similarity search quality of different
methods. This comparison aims at providing definitive clues
concerning the effectiveness. Then, the efficiencies of all the imple-
mented methods are also reported, for which we are interested in

http://www.irisa.fr/texmex/people/jegou/ann.php
http://yann.lecun.com/exdb/mnist/
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their performances during the online out-of-sample extension
process.

The performance of the proposed quantizer (SQ) is compared
with 5 competitors. Among these competitors, PQ is the most
typical case relying on k-means clustering and is closest to our
method. The other 4 methods are prevalent in the literatures
(SH, LSH) or developed very recently (CH, USPLH). SQ and PQ are
mainly parameterized by the number L of the subspaces. In this
comparison, L is given by m=4 yielding k̂ ¼ 24 unique sub-
codewords of 4 dimensions per subspace, where m is the dimen-
sionality of the original feature space of the data set. ForCH and
LSH, the hashing functions are established using the single hash
table, and the threshold utilized to find the points to be indexed
in the next hash table is fixed at 0.002. As for USPLH, the sequential
learning rate is 0.125. All these methods are performed to produce
the relatively compact codes of 64-bits.

4.3.1. Comparison of search quality
Fig. 3 shows the comparison of the search quality on SIFT-1 M,

where Fig. 3(a) and (b) respectively give the recall versus the num-
ber of returned top neighbors and the precision-recall curves. From
these figures, we can see that LSH also performs high-quality
search, when the feature space is not compressed with an extre-
mely short code length. Besides, it is surprising to see that CH,
which is developed in the most recent literature, achieves the
worst performance. An additional examination conducted beyond
this paper indicates that, CH may achieve a better performance
when it uses multiple hash tables. However, using multiple hash
tables is to some extent equivalent to encoding descriptors with
the bits multiple times of the desired length. This strategy will lead
to a scenario unfair to the other methods. As the baseline quan-
tizer, PQ provides the relatively better but not the best perfor-
mance among 5 benchmark methods. Differently, SQ performs
much better since the GLR analysis is introduced in the out-of-
sample extension process. In Fig. 3(a), SQ achieves the recall values
dominating most of the competitors and slightly better than LSH.
Besides, the superiority of SQ is more obvious in Fig. 3(b) because
it dominates on the precision-recall curves. This indicates that the
drop in precision of SQ for larger numbers of returned top neighbors
is much less compared with the others.

For the MNIST data set, the comparisons of the search qualities
are similarly illustrated in Fig. 4. In this case, CH with single hash
table still entails the worst performance on both recall and preci-
sion-recall curves, and USPLH deteriorates to be equivalent to CH.
As for LSH, its excellence does not hold on the precision-recall curve
in Fig. 4(b), indicating the relative deterioration of the search
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Fig. 3. Comparison of different methods on SIFT-1M. (a) Recall versus
accuracy compared with the case of SIFT-1M. In the meantime,
the k-means based quantizers perform even better. As shown in
Fig. 4(a) and (b), PQ lies on top of the recall curves among the 5
benchmark methods, and significantly outperforms the others on
the precision-recall indicator. Further, the proposed quantizer can
still improve it to a better performance. Even in the case that PQ
has announced the high performance, SQ can claim to be without
loss of its relative superiority. These results also demonstrate the
robustness of the k-means based quantizers with respect to those
relying on the other techniques.

4.3.2. Efficiency during the out-of-sample extension
In order to evaluate the efficiency of the implemented methods,

the running times of these methods are also compared. From a
practical point of view, we are interested in the efficiency during
the online out-of-sample extension process. Timings have been
taken on an Intel Core i3-550 3.2 GHz CPU with 4 GB RAM. All
these methods are implemented in Matlab platform. Fig. 5(a) and
(b) respectively show the comparisons conducted on SIFT-1M and
MNIST, where the average times used for encoding a sample out
of the learning subset are presented.

As a result, on both the two data sets, the proposed SQ takes
moderate computational times among the competitive algorithms.
Our methods cannot outperform all the competitors in this aspect,
but is computationally acceptable while guaranteeing the superior
quantization results. Therefore, from an overall perspective, the
proposed method can claim to be outstanding in the practical
applications.

4.4. Parameter discussion

The following paragraphs start with the further investigation
for SQ, concerning the impact of the code length on the search
quality. This investigation helps make a trade-off between the
computational complexity and quantization effectiveness in
practical tasks. Then, the number of subspace L crucial during
Cartesian product generalization is analyzed. This analysis is taken
as an extension for the research of [32], through which a more
generalized observation is given.

4.4.1. Code length
This section focuses on the relationship between the code

length and search quality. Figs. 6 and 7 illustrate the comparisons
conducted on SIFT-1M and MNIST, respectively. In both these two
figures, it is observed that the search quality of the propose
quantizer will improve with the increasing of the code length.
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Fig. 4. Comparison of different methods on MNIST. (a) Recall versus the number of returned top neighbors. (b) Precision-recall curves.

CH USPLH SH LSH PQ SQ
0

0.5

1

1.5x 10−3

Av
er

ag
ed

 T
im

e 
pe

r S
am

pl
e 

(s
)

CH USPLH SH LSH PQ SQ
0

0.2

0.4

0.6

0.8

1

1.2
x 10−3

Av
er

ag
ed

 T
im

e 
pe

r S
am

pl
e 

(s
)

Fig. 5. Comparison of the average time used for encoding a sample out of the learning subset on (a) SIFT-1M and (b) MNIST.
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Fig. 6. Comparison between the search qualities of different code lengths on the SIFT-1M data set. (a) Recall versus the number of returned top neighbors. (b) Precision-recall
curves.
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But the growth cannot remain stable but gradually slow down. As
the longer code length is naturally associated with the higher com-
plexity, it is required to make a trade-off between speed and qual-
ity in practical tasks. In our experiments, it is found that quantizing
the descriptors to be 64-bits is computationally acceptable without
a large sacrifice of search quality.
4.4.2. Subspace number
As previously discussed, SQ and PQ are mainly parameterized by

the number L of subspaces. It is reported that for a fixed number of
bits, using a small L with many sub-codewords is better than to
have large L with few sub-codewords [32]. When having the equiv-
alent number of sub-codewords k̂ per subspace, a larger L can
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Fig. 7. Comparison between the search qualities of different code lengths on the MNIST data set. (a) Recall versus the number of returned top neighbors. (b) Precision-recall
curves.
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Fig. 8. Comparison between the performances under different settings of L on SIFT-1M. (a) Precision-recall curves. (b) Training times.
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Fig. 9. Comparison between the performances under different settings of L on MNIST. (a) Precision-recall curves. (b) Training times.
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produce better performance [32]. This conclusion is achieved by
varying the value of L within a small range, i.e., from L ¼ 1 to
L ¼ 16. However, does this tendency hold when L varying within
a larger range?

To this end, this paper conducts a further verification by fixing
the desired number of bits to be 64, and clustering k̂ ¼ 264=L
sub-codewords per subspace. The verification results are shown
in Figs. 8(a) and 9(a), representing the comparisons on SIFT-1M
and MNIST for SQ, respectively. It is shown that, setting higher L
cannot get a better performance when it reaches 16. Instead, the
search quality even gets worse with exponential speed. The same
verification is conducted for PQ and there follows a similar result.
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In addition, the off-line training time under different L is also re-
corded for the comparison of efficiency. Timings have been taken
on the same device as described in Section 4.3.2. Figs. 8(b) and
9(b) respectively illustrate the comparison on SIFT-1M and MNIST.
As can be observed, the training time drops greatly with the use of
larger L. This demonstrates that splitting the original feature space
into product spaces is indeed an efficient solution. From an overall
perspective, it is reasonable to recommend selecting L flexibly in
practical tasks.
5. Conclusion

Though it has attracted much attention and achieved laudable
success in many applications, there is a problem of the traditional
k-means quantizers that is seldom realized. During the out-
of-sample extension process, the traditional k-means quantizers
assign to new samples the codewords relying only on the similar-
ities in Euclidean space without considering the statistical and
geometrical properties of the data. In spite of minimal quantization
error during off-line training, this strategy lacks statistical inter-
pretability, and may fail in many practical cases. Toward this prob-
lem, in this paper a novel quantizer is proposed, which determines
the affiliations of the new samples with respect to the obtained
Voronoi cells through the GLR analysis. The formulated out-
of-sample extension process is physically meaningful and practi-
cally preferable.

Experiments are conducted on two public data sets, SIFT-1M
and the MNIST, through which the proposed method is proved to
be computationally acceptable while guaranteeing the superior
quantization results. The impact of the code length on the search
quality is also analyzed to help make a trade-off between the com-
putational complexity and quantization effectiveness. Further-
more, the most crucial parameter during Cartesian product
generalization is extensively investigated. This investigation pro-
vides a more generalized observation extending the existing
works.
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